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ABSTRACT 

The thermal inactivation (55-62.5° C) of Listeria monocytogenes (mixture of Scott A, 

V7, and ATCC 19116) in pork slurry and ground pork that contained 0, 0.25 or 0.5% sodium 

pyrophosphate (SPP) was evaluated. Also, a mathematical model describing the effects and 

interactions of heating temperature (57.5 to 62.5 ° C), sodium pyrophosphate (SPP; 0 to 

0.5%), and salt (NaCl; 0 to 6%) on the thermal inactivation of starved L. monocytogenes 

ATCC 19116 in pork slurry was developed. The model was based on a split-split plot 

experimental design and means of decimal reduction times (D-values) were modeled as a 

function of heating temperature, SPP, and NaCl levels. Surviving cells were enumerated 

either on Modified Oxford Medium or on tryptic soy agar supplemented with 0.6% yeast 

extract (TSA YE). In the first study, D-values in pork slurry control (0% SPP) were 8.15, 

2.57, 0.99, and 0.18 min, at 55, 57.5, 60, and 62.5° C, respectively; D-values in ground pork 

ranged from 15.72 min at 55° C to 0.83 min at 62.5° C. D-values in pork slurry that 

contained 0.25% SPP (w/v) were 4. 75, 1. 72, and 0.4 min, at 55, 57.5, and 60° C respectively; 

the values in ground pork ranged from 16.97 at 55° C to 0.80 min at 62.5° C. Addition of 

0.5% SPP further decreased (P< 0.05) the heat resistance of L. monocytogenes in pork slurry 

but not in ground pork. The z-values in slurry ranged from 4.63 to 5.47° C whereas higher z-

values ( 5 .25 to 5. 77° C) were obtained in ground pork. Degradation of added SPP to 

orthophosphates in ground pork was two to three times greater than in pork slurry. The 

predictive model study indicated that increasing concentrations of SPP or NaCl in pork slurry 

protected starved L. monocytogenes from the destructive effect of heat. Combinations of 

6.0% NaCl and SPP (0.25 or 0.5%) increased the thermal inactivation of the organism 
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_compared to 6% NaCl alone. Possible reasons for the difference in the effect of SPP in the 

two studies could be that L. monocytogenes cells that have endured starvation are more 

tolerant to changes in heating temperature. This work showed the need to use starved L. 

monocytogenes to design thermal processes with an adequate margin of safety. 



www.manaraa.com

INTRODUCTION 

Listeria monocytogenes is a psychotropic pathogen, which poses a major threat to the 

safety of refrigerated foods (68). This organism has a fatality rate of about 20% (77) and is 

the second leading cause of death due to bacterial food-borne disease in the U.S. (56). US 

regulatory agencies specify a zero tolerance for L. monocytogenes in cooked and ready-to-eat 

foods because of the relatively high fatality rate linked to food-borne listeriosis and the 

uncertainty of the infectious dose for immuno-compromised persons (15, 68). 

Phosphates such as sodium pyrophosphate (SPP) and sodium tripolyphosphate 

(STPP) are used routinely in meat industry (100). These food additives are permitted for use 

at a maximum level of 0.5% in meat and poultry products (90). The main functions of 

phosphates in meat products are to increase water-holding capacity, bind structured meats, 

and protect flavor. In the past decades, there has been an interest in using phosphates as an 

antimicrobial to substitute for sodium nitrite in meat products. Although phosphates may be 

incorporated into processed meats to improve microbial safety, there is a controversy on the 

antimicrobial effectiveness of phosphates. Research has shown that the antimicrobial efficacy 

of phosphates vary depending on the type of phosphates used, the medium used (laboratory 

media, slurry, or real food system), and whether meat is fresh or cooked. 

Some consumers are nutrition conscious and are looking for meats cooked at lower 

temperatures. New types of raw and ready-to-eat products including ground pork, pork 

sausage, vacuum-packaged pumped chops or roasts, and vacuum-packaged cooked and sliced 

roast pork depend mainly and often upon refrigeration for control of pathogenic and spoilage 

microorganisms. Processors rely on phosphates, salts, and some other spices to protect 

consumers from food borne illnesses if these foods are temperature abused or held for 
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prolonged periods at refrigeration temperatures. A major research objective is to accurately 

predict the death kinetics of Listeria monocytogenes under various environmental conditions 

including temperature, pH, and concentration of sodium pyrophosphates. 

The composition of the heating menstruum can affect the thermal inactivation of L. 

monocytogenes (8). Since most predictive models for microbial inactivation in foods is done 

in model systems (e.g. broth, slurries) we investigated whether effects and interactions of 

multiple food barriers such as temperature, salt and phosphate result in the same inactivation 

of L. monocytogenes in slurry and in ground pork. There is a consensus that salt (NaCl) is 

protective against thermal inactivation of L. monocytogenes. Salt was protective against the 

thermal inactivation of L. monocytogenes at temperatures of 55 to 65°C but this protective 

effect was decreased at level of 6% salt in a predictive model that involved combinations of 

temperature, pH, salt, and sodium pyrophosphate (35). Tuncan and Martin (88) reported that 

the protective effect of salt was due to its lowering of water activity and increased osmotic 

pressure of foods. 

In sausages where phosphates and salts are used in combination, mathematical 

models that describe the combined effects to these ingredients on the heat inactivation of 

pathogens are used. Researchers from the USDA and others have developed predictive 

models to explain the behavior of L. monocytogenes, grown in rich laboratory media, in 

sausages with different levels of sodium pyrophosphate and salt. In the environment, 

microorganisms are routinely exposed to stresses. Stressed bacteria may develop some 

mechanisms to repair stress-induced damages and prevent death by the synthesis of stress 

proteins (43). Jenkins et al. (31) reported that proteins induced by starvation cross-protected 

Escherichia coli not only against heat but also against oxidative challenge. Another study has 
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shown that bacteria (Escherichia coli K165 and Sc122) that survived starvation underwent 

physiological changes and became hard to kill by heat (34). Lou and Yousef ( 43) 

investigated the thermotolerance of L. monocyotogenes that was adapted to certain 

environmental stresses. L. monocytogenes Scott A starved in phosphate buffer for 156 h 

showed a 13-fold increase in D-value at 56°C. 

There is a need to develop predictive modeling using starved L. monocytogenes to 

accurately predict the death kinetics for L. monocytogenes starved in water or on food contact 

surfaces in processing plants. This research will provide useful data on the effects and 

interactions of multiple barriers in foods on the heat resistance of starved and non-starved L. 

monocytogenes and thus extend the research efforts of USDA in its mission to generate 

sound processing guidelines to ensure the microbial safety of processed meats. 

Thesis organization · 

The body of this thesis is divided into two papers. Each paper has its own abstract, 

introduction, materials and methods, results, discussion, and references cited. Prefacing the 

main body is a general introduction and literature review. References cited in the general 

introduction and literature review are placed at the end of the thesis. 
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LITERATURE REVIEW 

Phosphates in meats 

Molins ( 63) published an extensive review in the use of phosphates in meats. He 

reported that as many as 40 million pounds of phosphates (80% for brines in hams and 

bacon) were used in meat, poultry, and fish in the 1970s. That figure has likely increased 

considerably in recent years. Sodium acid pyrophosphate contains two phosphorus atoms, 

each of which is attached to four oxygens, one sodium, and one hydrogen. It is acidic in 

aqueous solution ( 48). Sodium acid pyrophosphate (SPP) and sodium tripolyphosphate 

(STPP) are routinely used in meat industry (100). These food additives are permitted for use 

at a maximum level of 0.5% in meat and poultry products (90). The main functions of 

phosphates in meat products are to increase water-holding capacity, bind structured meats, 

and protect flavor and to prevent lipid oxidation. In the early 1980s, searches to substitute 

sodium and nitrites in foods led to the reevaluation of phosphates as meat additives (65). This 

new interest spurred research in antimicrobial proprieties of phosphates. Currently, 

phosphates may be incorporated into processed meats to improve microbial safety (36). 

Water-holding capacity of phosphates 

The primary functional use of phosphates is to increase water-holding capacity 

(WHC) of meats, particularly in hams. Phosphates increase retention of native or added water 

and subsequently reduce cooking losses. Earlier theory (25, 97) attributed the WHC of 

phosphates to its capability to bind calcium and magnesium ions. Later research could not 

substantiate the importance of calcium chelation in enhancing WHC (5, 29, 30, 72, 73, 75). 

Sherman (74) used EDTA that binds calcium and magnesium, but could not reproduce WHC 

of phosphates. Hellendoom (29) found that EDT A depressed rather than enhanced WHC in 
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meat. Berman and Swift ( 5) suggested that the binding by phosphates of zinc, not calcium 

and magnesium, was related to WHC. 

WHC depends on the amount of phosphates used and temperature. Sherman (73) 

added phosphates to ground pork stored overnight at 0°C. He observed that, during cooking 

of ground pork with less than 2% of phosphates, WHC decreased initially and increased after 

40°C to reach a maximum at 50°C. However, ground pork with more than 2% of phosphates 

absorbed all the added fluid before heating. 

Hydrolysis of phosphates does not seem to affect the extent ofWHC. Because the 

absorption of water was not affected by the storage of ground pork overnight (72), Molins 

suggested that the amount olwater ~bsorbed by meat after phosphate addition became 

permanent regardless of the nature of phosphates (pyrophosphates or orthophosphates). This 

confirmed report by Swift and Ellis (84) who did not find any differences in WHC between 

orthophosphates and pyrophosphates in rabbit muscle WHC. 

The pH affects WHC by phosphates. Earlier work by Swift and Ellis (84) 
.. 

demonstrated that pH and ionic strength affected absorption of water by phosphates in rabbit 

muscle. They suggested that phosphates, not specifically pyrophosphates, dissolved proteins 

based on the pH and ionic strength. Sherman (72) attributed increased WHC in meat treated 

with TSPP and sodium polyphosphate glassy (SPG) to the degree of solubilization of 

actomyosin during storage of treated phosphate at 0°C. This phosphate-induced solubilization 

was positively related to pH greater than 6.25. 

Sherman (72) reported that ionic strength (µ) was important only insofar as it 

controlled the rate of ion absorption by meat, so that more ions were absorbed as µ increased. 

Anions were preferably retained as compared to cations when ground pork was heated at 
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100°C. This suggested that the phosphate anion had some role to play in WHC increase. 

Sherman (74) further noticed that there was a synergism between phosphates and sodium 

chloride in affecting ionic strength. The combination of polyphosphates with NaCl increased 

the absorption of sodium and chloride to a level higher than the sum of the individual 

contributions. 

Phosphates such as STPP, TSPP, SPP, SPG can affect the pH of raw or cooked meat. 

Alkaline phosphates raise the pH of meat away from the isoelectric point. Shults et al. (7 5) 

and Wierbicki et al. (96) showed that the rate at which alkaline phosphates increase pH was 

proportional to their rate of increasing WHC. Their increasing order was SPG<STPP<TSPP. 

This order was different from that reported by Tims and Watts (1958) (SPG<TSPP<ortho-

P<STPP), or by Hamm (26) ( ortho-P<TSPP<SPG<STPP). Unlike alkaline phosphates, 

sodium acid pyrophosphate reduces the pH of meat. This, in tum, has been shown to increase 

shrinkage (86), decrease cooking yields (Hargett et al, 1980), and reduce the swelling of raw 

meat (29). 

Hydrolysis of added phosphates in meats 

Muscle foods have acid and alkaline phosphatases that participate in the breaking 

down of added phosphates. Besides the enzyme-catalyzed hydrolysis, heat-induced 

hydrolysis was demonstrated in cooked pork sausage (73). The rate of enzymatic hydrolysis 

of phosphate depends on the concentration and type of phosphate (60). A summary of 

hydrolysis of phosphates in beef showed that the hydrolysis of phosphates in raw beef was 

rapid enough to degrade between 46 and 96% of added phosphates within 48 h depending on 

the type of phosphates; STPP hydrolyzed at 47% within 1 hat 4-5°C while TSPP was broken 
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down at 10% and SPG was degraded at 34% after 1 h (63). Mihalyi-Kengyel and Kormendy 

(58) investigated the effect of NaCl on the activity of some phosphatases in cured, 

noncomminuted meat. He noticed that NaCl seemed to activate pyrophosphatases although 

the rate of hydrolysis for pyrophosphates was lower. Also, NaCl decreased the rate of 

hydrolysis of tripolyphosphates as tripolyphosphatases were inhibited. In general enzyme 

activity is a function of temperature. Molins (62) was surprised to notice a breakdown of 

condensed phosphates in frozen ground beef patties at temperature below -20°C. This finding 

indicated activity of some phosphatases in frozen muscle foods. Awad (1) reported meat 

phosphatases were inactivated by heat during cooking at approximately 40°C and that 

inactivation was complete at 60°C. 

Antimicrobial properties of phosphates 

Effect of phosphates in media 

Antimicrobial properties of phosphates have been demonstrated in laboratory media. 

Marcy (50). He reported that factors that affect the efficacy of phosphates as antimicrobials 

were the age of the microbial culture, and the formation of lethal superoxide radicals 

following exposure of phosphate or glucose in the media to atmospheric oxygen. Phosphates 

exert their antimicrobial effect by chelating the essential cations of calcium and magnesium. 

This chelation results in leakage of cell solutes, loss of viability and rapid lysis of cells. Also, 

chelation can lead to the impairment of the function of the cytochrome system with 

subsequent decrease in the synthesis of ATP. Another factor that explain the antimicrobial 

property of phosphates is the ability to change the water activity and pH of media. In their 

study with radiation-resistant strains of Moraxella-Acinobacter, Snyder and Maxcy (80) 

showed that NaCl, yeast extract, dehydrated m-plate count broth, or SPG decrease the water 
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activity of standard laboratory media to values below 0.99 resulting in inhibition of 

microorganisms. However, this inhibition effect disappeared as the water activity was 

returned to its original value. Phosphates affect the solubility of proteins because they alter 

the net charge of proteins, influence the pH of the solution, and increase the ionic strength of 

solutions (63). Much of the work on phosphates effect on microorganisms in media was 

focused on Clostridium botulinum as scientists were looking for way to substitute sodium 

nitrite with phosphates. It was found that the addition of SPP did not affect the outgrowth of 

spores at pH 5.85 to pH 5.55. On the contrary, vegetative cells of C. botulinum were 

inhibited by addition of SPP at pH 5.55 but not at pH 5.85 (92). The concentration of 

phosphate used is another factor th~t affect the effectiveness of phosphates as antimicrobial. 

At 0.4%, SPP as well as orthophosphates, were unable to affect the normal growth of C. 

botulinum in laboratory media (92, 94). On the other hand, 0.5% STPP added along with 

1.5% sorbate resulted in greater inhibition of normal cell growth of C. botulinum type E 

when compared with 1.5% sorbate (76). The types of phosphates play a role in the efficacy of 

the antimicrobial solution. Even though SPP or orthophosphates at 0.4% did not inhibit 

vegetative cell growth of C. botulinum, SPP appeared to be more toxic than orthophosphates. 

SPP affected the morphology of the cells to make them longer and wider than normal (93, 

94). Later, Wagner and Busta (95) added SPP labeled with 32P in a medium inoculated with 

C. botulinum 52A vegetative cells. They noticed an increase in 32P following growth when 

SPP was present. They believed that SPP bound anion sites of proteins and protein fragments 

and hypothesized that SPP affected the synthesis of proteases from RNA by associating itself 

with the RNA. Therefore, it was concluded that SPP prevented the synthesis of protease 

needed to activate the protoxin in C. botulinum cells. 
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Zaika and Kim (100) evaluated the effect of sodium polyphosphates (pyrophosphate, 

tripolyphosphate, sodaphos, hexaphos, and glass H with 2, 3, 6, 13, and 21 chains, 

respectively) on growth of L. monocytogenes. Only the long-chained polyphosphates 

inhibited growth of L. monocytogenes in brain heart infusion+ 0.3% glucose at pH 6.0 and at 

28, 19, 10, and 5°C; hexaphos and glass H were more inhibitory than sodaphos. Use of these 

compounds from 0.3% to 1.0% resulted in significant increase in lag time and no growth was 

observed after 40 days in the presence of 2.0%. The addition of 2.0% NaCl increased the 

inhibitory effect of sodium polyphosphates. 

Effect of phosphates in meats 
' . 

A distinction has to be made in the use of phosphates in fresh and cooked meats. 

Fresh meat contains hydrolytic enzymes which breakdown pyro-and polyphosphate to 

orthophosphate. Orthophosphate is known to have less antimicrobial activity than its 

precursors. Molins et al. (61) found that orthophosphate did not inhibit psychrotropic 

spoilage bacteria in fresh ground pork even at level as high as 1.0%. However, SPP extended 

the shelf life of the same ground pork by 50% when compared with treatment with 

orthophosphate. The activity of phosphatases is more pronounced in ground meat, beef, and 

pork as compared with poultry meat. In poultry, phosphatases are membrane-bound, and 

hence, not easily released. In ground or comminuted meat, grinding ruptures muscle cells 

resulting in additional release of phosphatases. Antimicrobial activity of phosphates has been 

demonstrated in cured and cooked meats. In processed meats the presence of ingredients such 

as salt, sodium lactate, and sodium nitrites makes it difficult to separate the effect of 

phosphates from that of other food additives. 
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Effects of phosphates in fresh meats 

Most the work to improve the shelf life of fresh meats have been done in poultry. 

Chen et al. (9) used a combination of 75% sodium tripolyphosphate (STPP) and 25% 

tetrasodium pyrophosphate (TSPP) (Kena) and tested it against 17 cultures of 

microorganisms associated with chicken. When 3. 0% Kena was applied as precooking or 

presoaking treatments, most of the surface organisms were eliminated. Gram-negative 

microorganisms, however, were more resistant to this treatment that were the Gram-positive 

species except Streptococcus lactis. Also, other researchers studied the antimicrobial action 

of Kena. Spencer and Smith (79) noticed that when iced water with 7% of Kena was used in 

the chilling of broiler carcasses, carcasses prolonged their refrigeration shelf life by 1 or 2 d. 

Steinbauer and Banwart (81) reported that when broiler carcasses were chilled by ice with 

6% Kena, the bacterial counts were kept low in broilers for 20 days at storage at 5°C. A 

second experiment by the same authors did not show a similar effect of Kena. At a storage 

temperature of 2.2°C, the shelf life of poultry carcasses that were chilled in ice containing 3 

and 8% Kena was extended by 17 and 65%, respectively (14). 

Use of phosphate in fresh ground pork or beef has shown little antimicrobial effect. A 

study testing the antimicrobial action of different forms of phosphate in uncooked bratwurst, 

refrigerated at 5°C did not reyeal any effect of 0.5% TSPP, STPP, or SPG on the number of 

endogenous spoilage bacteria or inoculated Staphylococcus aureus (59). The treatment with 

0.5% SPP, however, lowered the total plate counts. In another study, 0.4% TSPP, STPP, or 

three phosphate blends were mixed with ground beef during preparation of beef patties (62). 

No effect was noticed in the total bacterial counts in patties held at -20°C. Also, none of the 

phosphates delayed spoilage when patties were thawed and kept at 24 to 25°C for 24 h. Only 
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TSPP and one blend of Brifisol 414 (SPP, TSPP, SPG) delayed the growth of lactic acid 

bacteria. 

Phosphate has been used in combination with other preservatives to prolong shelf life 

of fresh meats (57). Bacteria from the Enterobacteriaceae group were significantly inhibited 

when pork chops were treated with a combination of preservatives, vacuum packaged and 

stored until 10 weeks at 2 to 4 °C. The treatment solution used contained potassium sorbate, 

Na Cl, sodium acetate and phosphates (SPP or Brifisol 414 ). Even though, potassium sorbate 

contributed most of the antibacterial effect, it could not be used alone because of its negative 

effect on the color of the product. A combination of 10% of potassium sorbate and Brifisol 

414 produced microbial control similar to that of sorbate alone and preserved the natural 

color of the pork chops. By using a combination of 5% Brisifol, 10 % potassium sorbate, 5% 

NaCl, and 10% sodium acetate, Unda et al. (89) kept the mesophilic, psychotropic, anaerobic 

and facultative anaerobic bacteria and lactobacilli counts low in fresh rib eye steaks for 12 

weeks at 2 to 4 °C. In the same time, the growth of Enterobacteriaceae was totally inhibited 

and the color of the meat preserved. 

Effects of phosphates in cured, cooked and processed meats 

The effects of phosphates in combination with sodium nitrite, sorbic acid, and/or 

potassium sorbate against clostridium spp. have been investigated as alternatives to sodium 

nitrite in meats. Much of these studies have dealt with either clostridial growth or, in the 

case of C. botulinum, toxin production. Molins (63) published an extensive review of these 

studies. In this chapter, we report research on the use of phosphates in extending the shelf life 

of processed and cooked meats. 
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Nielsen and Zeuthen (66) used a blend of sodium tripolyphosphate (STP), 

tetrasodium pyrophosphate (TSPP), and SPP or STP alone to study their effectiveness against 

spoilage bacteria in bologna. They used cooked (75°C), sliced, vacuum-packaged bologna 

formulated with 55 ppm NaN02, 168 ppm sodium ascorbate. None of the phosphates or 

mixtures had any effect on lactic acid bacteria. On the other hand, 0.3% of acidic blend 

reduced the population of Brochothrix thermosphacta by 1 log after IO days of storage at 

2°C. The acidic blend strongly inhibited B. thermosphacta by at least 3 logs after 30 days 

storage at 2°C. 

Madril and Sofos (53) indicated that SPP was the only phosphate to improve the 

antimicrobial properties when formulated with 1.25% NaCl in comminuted meat products. 

The antimicrobial properties of SPP could not be explained whether it was due to a pH 

decline in the product and /or a specific phosphate effect. Also, Madril and Sofos (54) 

suggested that SPP might have more antimicrobial properties at pH 6.0 than at pH 5.7. They 

observed that concentrations of 0.5% SPP and 1.3% NaCl (2.3% brine) in comminuted meats 

at pH <6.3 inhibited microbial growth for up to 2 weeks at 27°C. Also, there was delay in 

initial formation of gas and reduced gas production. However, 0.4% SPP in combination with 

1.3% NaCl was less effective compared with 2.5% NaCl without SPP in delaying gas 

production in the same product. 

Marcy et al. ( 49) studied the combined effects of acid and alkaline pyrophosphates on 

the natural flora of a cooked meat system. They found that 0.4% SPP, tetrasodium 

pyrophosphate (TSPP), or combinations of these phosphates did not have any effect on total 

microbial counts in cooked pork sausage (2.0% salt, 0.5% pepper), vacuum-packaged and 

held refrigerated at 5°C for 21 days. Different from TSPP, SPP significantly affected counts 
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of mesophilic and facultative anaerobic organisms after to 48 h of temperature abuse (20-

220C). The organisms affected were streptococci or very similar coccobacilli. 

Similar results of the effects of SPP were reported in an experiment with the same 

type of sausage ( 50). In that experiment, neutral trisodium pyrophosphate (PYR0-3) and SPP 

were used (0 and 0.4% or combinations). Both phosphates lowered the counts of mesophilic 

bacteria when the sausage was held at 7°C for 21 days. Also, both phosphates significantly 

affected counts of mesophilic and facultative anaerobic microorganisms after 48 h 

temperature abuse at 20-22°C. 

Later, Marcy et al. (51) concluded that phosphate level, not phosphate type, was the 

determining factor in bacterial inhibition of the natural bacterial flora of a cooked meat 

system. The sausages were cooked as in previous work (49, 50). When four commercial 

phosphate blends and a neutral pyrophosphate were used at levels of 0.30-0.65%, higher 

counts of mesophilic and facultative anaerobic bacterial were always present in untreated 

sausage during refrigerated storage (5°C for 21 days) or temperature abuse (20-22°C for 48 

h). 

Recently, Flores et al. (20) found that a phosphate blend Bekaplus MSP (sodium 

polyphosphate, sodium metaphosphate, and sodium orthophosphate) at 0.5% had no effect in 

controlling E.coli 0157:H7 in ground beef; but it did have a significant effect on controlling 

E.coli 0157:H7 in fresh pork sausage when stored at 4°C over 7 days. The sausage was 

seasoned with 2.3% of a blend composed of 8.3% sodium chloride 8.5% sage and 8.5% 

white pepper. The authors believed that the difference in effectiveness of the phosphate in the 

sausage compared with the ground beef could be attributed to inherent differences in the 

meat or, more likely, to the antimicrobial properties of the spices in the sausage. There was 
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minimal or no effect of the phosphate blend on the growth of L. monocytogenes or S. 

typhimurium in boneless ham and smoked sausage. 

Antimicrobial properties of Sodium chloride (NaCl) 

The antimicrobial activity of N aCI may be direct or indirect. The inhibition of 

microbial growth depends on the amount of NaCl. For example, 16.54% NaCl can prevent 

microbial growth. This large amount of N aCI can be used in the processing of dried and 

smoked meats and fishes. In this case, the antimicrobial action of NaCl is direct. On the other 

hand, NaCl can be used as a flavoring and functional ingredient in some foods. Sodium 

chloride in these foods acts with other preservatives to prevent microbial growth and its 

antimicrobial action is called indirect. Also, the indirect action of NaCl involves decreasing 

the water activity to cause inhibition of microbial growth. Low water activity can lead to 

osmotic shock of the bacterial cell. During osmotic shock, the cell loses fluids and eventually 

dies. Sodium chloride may inhibit bacteria growth by decreasing the solubility of oxygen 

making it less available to the microbial cell, by lowering pH, by increasing the toxicity of 

sodium and chloride ions, by causing loss of magnesium ions ( 4), or by interfering with the 

cellular enzymes (71 ). 

Various bacteria can be grouped based on their salt tolerance (2). First, there is the 

group of nonhalophile bacteria that can grow well at levels of Oto 0.5% NaCl. Some bacteria 

belonging to the genera Staphylococcus, Micrococcus and Clostridium belong to this group. 

Second, there are bacteria that can tolerate and grow in the range of 1.5% to 5.0% NaCl. 

They are called slight halophiles and members of this group include Achromobacter, 

Flavobacterium, Pseudomonas, and Vibrio. Third, the group of moderate halophiles 
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comprises bacteria that can tolerate up to 5 to 20% NaCl. Some of the lactic acid bacteria and 

some spore formers are in this category. The last group is composed of extreme halophiles. 

These bacteria require at least 9% sodium chloride for growth, with the optimum 

concentration for growth ranging between 12 to 23% and the maximum being 32% (47). An 

example of extreme halophile is Halobacterium salinarum which has a cell wall that is 

stabilized by sodium ions. In low sodium environments the cell wall of this organism breaks 

down and the cell lyses (47). Obligate halophiles require 15% NaCl and can be found in 

saturated brines. 

The antimicrobial mechanism of sodium chloride is explained by the lowering of 

water activity. Tuncan and Martin (88) showed that heat resistance of S. aureus in NaCl 

increased as the degree of salt-water association increased. They believed that the effect of 

NaCl on thermal inactivation of microorganisms was due to reduced water activity and 

increased osmotic pressure of the heating menstruum. Leistner and Russell (39) 

acknowledged that for a given solute there was an optimum concentration of the solute that 

gave a maximum heat protection to a microorganism. But outside of this concentration, the 

heat resistance of the microorganism decreased. 

Many studies were conducted on the effects of sodium chloride on the thermal 

inactivation of Listeria monocytogenes. One of the studies investigated the effects of sodium 

chloride, temperature, and pH on the growth of L. monocytogenes (12) in cabbage juice. 

Concentration of 2% sodium chloride or higher were found to inhibit L. monocytogenes. 

Survival studies showed that there was 90% decline in L. monocytogenes Scott A in 5% 

sodium chloride over 70 days at 5°C. Another strain ( coleslaw outbreak strain) survived in 

cabbage juice containing 3.5% or less sodium chloride over a 70 days period. Both strains 
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had extended lag times at 1.5 and 2.0% sodium chloride. Initial exposure to heat and ethanol 

increased the tolerance of L. monocytogenes to sodium chloride ( 43 ). 

Studies in broth, pork, and beef reported a reduction in thermal inactivation of L. 

monocytogenes in various meat blends containing 3 to 4% NaCl (11, 18, 46, 99). Yen et al. 

(99) found NaCl protected L. monocytogenes against thermal destruction at concentrations up 

to 3%. They inoculated ground pork (15% fat) with a mixture of nine strains of L. 

monocytogenes (107 -108 CFU/g) and cooked it at 60°C. They found that the destruction of 

these microorganisms was 3 log per gram less in ground pork with 3% NaCl than in ground 

pork without added sodium chloride. Juneja and Eblen (35) studied the interactive effects of 

temperature, pH, N aCI and sodium pyrophosphate on the heat inactivation of L. 

monocytogenes in beef gravy. In general, N aCI protected the organism against the heat. 

Although sodium pyrophosphate (0.3%) decreased the heat resistance of cells at pH 8.0 and 

6% NaCl, there was a protective effect of NaCl against heat at lower pH. 

Short-term exposure to salt can protect L. monocytogenes against heat. J<l>rgensen et 

al. (33) reported an increase in heat resistance of L. monocytogenes grown in 0.09 mol/liter 

NaCl and exposed to test media containing 0.5, 1.0, or 1.5 mol/liter NaCl. 

Heat inactivation kinetics predictive models 

Mathematical modeling of microbial death is a technique used to determine the 

effects two or more food parameters on microbial heat resistance. Environmental food 

parameters include but are not limited to temperature, pH, water activity, salt, sodium nitrite, 

and gaseous atmosphere ( aerobic or anaerobic). Models try to simplify complex food 

interactions on the survival of microorganisms in broths or food models. Hence, they cannot 
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be applicable to broad range of foods. It is crucial that any model be validated in the specific 

food of interest before it can be used for thermal processing or food safety decisions (98). 

There are numerous predictive models describing the behavior of L. monocytogenes in 

broths, food model systems, or foods with two or more factors. 

Typical predictive models are linear regression analyses of D-values ( 41 ). D-values 

are calculated using the inverse of the slope of the best fit line when log of the number of 

survival cells is plotted against heating time in minutes. The log-linear thermal death time 

model assumes that the observed data are closely scattered along the slope and, that the cells 

have the similar heat resistance. This is typical of high processing temperatures in canning 

(42). However, studies (3, 41) have shown that non-linear inactivation of microorganisms 

occurred during heating at lower temperatures. In those experiments, thermal inactivation 

slopes display an initial shoulder or lag region followed by a linear exponential decline 

region and a final tailing region. Different approaches have been used to accurately estimate 

heat resistance for nonlinear data. 

One of these approaches is the use of the Gompertz equation. The Gompertz equation 

was originally used to describe the asymmetrical sigmoid shape of microbial growth curves 

based on temperature, pH, and NaCl. Bhaduri et al. (3) adapted the Gompertz equation to 

account for thermal destruction of L. monocytogenes in liver sausage slurry. Those 

researchers found that the Gompertz model gave a good prediction of the sigmoidal survival 

curves in that study. Later, Linton et al. (41) adapted the Gompertz equation to model 

nonlinear survival curves for L. monocytogenes Scott A. They modified a model used the 

describe growth of Clostridium botulinum type A in pasteurized pork slurry by Gibson et al. 

(23). A log surviving fraction (LSF; LSF = log [CFU(t)/CFU(O)] instead of microbial growth 
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was modeled. They proceeded using a "by-cell" analysis to determine the accuracy of 

individual treatment to describe the survival as they heated L. monocytogenes Scott Sin 

O.IM KH2P04 buffer at three temperatures (50,55, and 60°C), three pH levels (5,6, and 7), 

and three NaCl concentrations (0,2, and 4%). After, they used the data from all treatment 

cells to form a "full model" modified Gompertz equation. In that study, large shoulders and 

lag regions were common at 50°C and 55°C with linear curves at higher temperatures. The 

correlation of the full model modified Gompertz model as R2 was 0.89. Linton et al. (42) 

applied the Gompertz equation to predict the thermal inactivation of L. monocytogenes in a 

real food system. L. monocytogenes Scott A was inoculated in infant formula and its heat 

resistance was observed for combinations of temperature (50,55, and 60°C), pH level (5,6,7) 

and NaCl (0,2,and 4%). This study confirmed that L. monocytogenes Scott A survival curves 

were more linear as temperature was increased from 50 to 60°C. The correlation of observed 

LSF versus predicted LSF was good at 0.92. 

Recently, Chhabra et al. (10) used the same modified Gompertz model to determine 

the effects on formulated dairy milk of pH (5.0, 6.0, 7.0) milk fat (0,2.5,5.5%), and 

temperature on the thermal survival of L. monocytogenes Scott A. The full model at 

temperatures of 50,60, and 65°C, produced a poor LSF correlation R2 of 0. 72. At 55°C and 

pH 5.0, predictive values from the Gompertz equation were twofold the values of individual 

sets, 4D values for linear equation were closer to those of individual sets. At 60 and 65°C, 

4D values obtained by the three methods were similar. In view of the fact that the modified 

Gompertz model overestimated survival compared to the observed data for temperatures 

below 61 °C, the authors suggested that the use of Gompertz equation would be accurate for 
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processing temperatures above 61 °C. Another limitation of the Gompertz equation is that it is 

reliable only if used for a maximum level of 4 to 5 log of cells. 

A log-logistic function was applied successfully to quantify the effects of temperature 

on the thermal inactivation of L. monocytogenes (11) and the effect of heating rate on the 

inactivation of L. monocytogenes (82). In another experiment, a log-logistic function was 

used to develop 3-factor thermal inactivation models for Salmonella enteriditis and 

Escherichia coli 0157:H7 based on temperature (54.5 to 64.5°C), pH (4.2 to 9.6) and NaCl 

concentration (0.5 to 8.5% w/w) (6). Results indicated that 84 % and 83% of survival curves 

represented a linear logarithmic death for S. enteritidis and E. coli 0157:H7, respectively. 

Only the remaining curves showed shoulder and tailing regions. 

A secondary model of quadratic response was used to study the effects and 

interactions of temperature (55 to 65°C), pH (4 to 8), NaCl (0 to 6%) and SPP (0 to 3%) 

levels in beef gravy on the inactivation of four-strain L. monocytogenes cocktail (35). After 

the D-values were transformed to the natural logarithm form, a quadratic response surface 

model was developed for curves fitting the linear function. At 55°C, lag periods were 

observed and correction was made in the calculation of D-values. The mathematical model 

generated gave a good prediction or the survival of the pathogen within the combinations of 

the four environmental factors studied (R2 = 0.95). 

No single predictive model can be applied to all temperatures. Depending on the 

temperature, a linear or non-linear model can be appropriate. One can argue that the 

Gompertz equation fit best the thermal inactivation of L. monocytogenes. But results from 

previously mentioned studies showed that this type of equation had a poor correlation 

between observed and predicted values at higher temperature ( 61 °C and above). On the other 
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hand, linear regression model gives a better correlation at high canning processing 

temperatures but does not provide a good correlation at lower temperatures. Additional 

mathematical and statistical techniques may be used to adapt a linear or a non-linear equation 

to model a wide range of temperatures. Regardless of which equation is used to represent 

data, a predictive model should be used as an initial tool to estimate pathogenic inactivation 

and to provide an understanding of how various conditions affect the death of pathogens 

(10). 

Thermal resistance of Listeria monocytogenes 

Different strains of L. monocytogenes may behave differently when exposed to heat 
' . . 

treatment. Other factors that affect heat resistance are age of the culture, growth conditions, 

physiological status of the vegetative or stationary cells, recovery media, and characteristics 

of foods such as salt content, aw, acidity, and the presence of other inhibitors. 

Research has shown that strains of L. monocytogenes under similar experimental 

conditions respond differently to heat. For example, Golden and al. (24) reported D-values of 

16.0, 10.4, 7.4, and 5.7 min for L. monocytogenes strains Brie-1, LCDC 81-861, and DA-3 in 

tryptose phosphate broth at 56°C, respectively. In another study in tryptone soy broth, 

Mackey et al ( 46) found D57°c ranging from 6.5 to 26 min for 29 L. monocytogenes strains. L. 

monocytogenes Scott A is the strain that is routinely used for thermal inactivation studies. Its 

heat resistance appears to be i.ntermediate among strains of L. monocytogenes. Listeria 

innocua has shown D-value higher than some L. monocytogenes strains, Scott A including 

(21). 
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Studies in foods have produced differences in heat resistance for L. monocytogenes. 

Investigators have reported various D-values for L. monocytogenes in ground meat. 

According to Farber (17), L. monocytogenes (strain not specified) had a D-value of 3.12 min 

in ground meat packaged in laminated pouches and heated to an internal temperature of 

60°C. Boyle et al. (8) reported a D-value of 2.54 min for L. monocytogenes Scott A in ground 

beef slurry at 60°C. Schoeni et al. (70) found a D-value of 3.5 to 4.4 min for L. 

monocytogenes (5 strains) in ground roast beef at 60°C. At 63°C, D-values for L. 

monocytogenes Scott A ranged from 0.5 to 0.6 min and 1.1 to 1.2 min in lean (2% fat) 

ground beef and fatty (30.5%) ground beef, respectively (16). L. monocytogenes Scott A in 

ground pork had a D-value at 60°C of 1.14 min (67). In that study, the investigators reported 

a D-value of 1.70 min at 60°C for L. monocytogenes Scott A that contained soy hulls. Factors 

such as fat composition, water activity, pH of the ground meat, type of container, strains of L. 

monocytogenes, and type of plating medium could account for differences among D-values 

in different food systems. 

The age of the microorganisms affects thermotolerance. Cells in the stationary phase 

are believed to be more heat resistant than exponential phase cells. Results from a study 

showed that at 60°C, cells of stationary phase L. monocytogenes strain 13-249 exhibited D-

values four times higher than those of exponential cells (2.22 min as compared to 0.6 min) 

(32). 

Growth condition is another factor that affect thermotolerance. Temperature affects 

the growth and synthesis of cellular constituents and subsequently determines the thermal 

tolerance of bacterial cells (13). Thermotolerance of bacteria increases as the growth 



www.manaraa.com

22 

temperature of the culture increases prior to heating increases (37, 44, 45). L. monocytogenes 

cells grown at 10°C had a D-value at 60°C of 0.8 min when heated in sausage slurry, whereas 

cells grown at 37°C had a D-value at 60°C of 1.6 min (3). Heating at a lower temperature 

efficiently destroyed cells of L. monocytogenes grown on refrigerated meat (7). Cells grown 

at low temperatures show an increase in unsaturated fatty acids in the cytoplasmic 

membrane, increased membrane fluidity, reduced membrane viscosity, and increased heat 

sensitivity (22, 27, 52). Increased heat sensitivity of bacterial cells grown at low temperatures 

can be lost if cells are held for 1 to 5 hrs at 3 7°C prior to heating. 

Environmental stress is another factor contributing to differences in heat resistance. 

Heating bacterial cells slowly prior to thermal inactivation increases their thermotolerance. 

Increased thermotolerance of L. monocytogenes that were heated slowly was linked to 

induction of the heat-shock response (82). The synthesis of a new set of proteins in response 

to heat challenge may be the basis for acquired thermotolerance in microorganisms (69). 

Although a direct cause and effect relationship between the synthesis of heat shock proteins 

and acquired thermotolerance is debatable (91 ), this relationship seems to be universal and 

has been investigated in L. monocytogenes, Salmonella, and E.coli 0157:H7 (18, 44, 64). 

Increased heat tolerance can be induced by short-term exposure to high salt. L. 

monocytogenes Scott A increased by 1.3 to 8 fold its heat resistance when they were grown 

in 0.09 mol/liter NaCl and exposed to 0.5, 1.0, or 1.5 mol/liter NaCl. On the other hand, a 

downshock from 1.5% NaCl to 0.09 % NaCl resulted in significant reduction in heat 

resistance(33). Lihono et al. ( 40) found that L. monocytogenes Scott A cells grown in 5% 

NaCl exhibited a 1.4 fold increase in heat tolerance compared with the control cells grown in 
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trypticase soy broth supplemented with 0.6% yeast extract. However, these osmotic adapted 

cells lost their increased thermotolerance within 8 min of osmotic downshift in pork slurry. 

Starvation significantly increases the heat resistance of L. monocytogenes. This was 

proven by Lou and Yousef ( 43) who found that L. monocytogenes Scott A, starved in 

phosphate buffer for 156 h, exhibited a 13-fold increase in D-value at 56°C. Mazzotta and 

Gombas (55) starved an outbreak strain of L. monocytogenes in phosphate-buffered saline, 

pH 7, for 6h at 30°C. Those authors found that stationary phase cells starved for this short 

period had D-values twice higher than those of stationary phase cells ( 11.2 min versus 5. 9 

min at 58°C and 2.1 min versus 0.9 min at 62°C) in broth but not in hot dog batter. 

Cells starved in the laboratory are comparable to cells surviving cleaning and 

sanitizing operations on raw meat processing equipment and being deprived of nutrients long 

enough to induce the stress response (55). Starvation is one of the most important stresses 

because it induces a general stress response in bacteria. Jenkins et al. (31) have demonstrated 

that E. coli cells starved in 0.3% glucose for 4 h produced about 30 stress proteins. Several of 

these proteins were heat shock proteins that protect against other homologous or 

heterologous stresses (acid, heat, oxidative) (31, 43). Other stresses that have been found to 

increase heat resistance of L. monocytogenes are acid stress (38), decrease in aw (Sumner et 

al, 1991 ), and increase in solute concentrations (78). 
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INFLUENCE OF SODIUM PYROPHOSPHATE ON THERMAL INACTIVATION 

OF LISTERIA MONOCYTOGENESIN PORK SLURRY AND GROUND PORK 

A paper published in the Journal of Food Microbiology, 2001, Vol. 18, pp. 269-276. 

M. A. Lihono1
, A. F. Mendonca2

, J. S. Dickson, and P. M. Dixon. 

Summary 

The thermal inactivation (55-62.5° C) of Listeria monocytogenes in pork slurry and ground 

pork that contained 0, 0.25 or 0.5% sodium pyrophosphate (SPP) was evaluated. Surviving 

cells were enumerated on Modified Oxford Medium. Decimal reduction (D)- values in pork 

slurry control (0% SPP) were 8.15, 2.57, 0.99, and 0.18 min, at 55, 57.5, 60, and 62.5° C, 

respectively; D-values in ground pork ranged from 15.72 min at 55° C to 0.83 min at 62.5° 

C. D-values in pork slurry that contained 0.25% SPP (w/v) were 4.75, 1.72, and 0.4 min, at 

55, 57.5, and 60° C respectively; the values in ground pork ranged from 16.97 at 55° C to 

0.80 min at 62.5° C. At 62.5° C, L. monocytogenes in slurry that contained SPP were killed 

too rapidly to allow determination of the D-value. Addition of 0.5% SPP further decreased 

(P< 0.05) the heat resistance of L. monocytogenes in pork slurry but not in ground pork. The 

z-values in slurry ranged from 4.63 to 5.47° C whereas higher z- values (5.25 to 5.77° C) 

were obtained in ground pork. Degradation of SPP to orthophosphates in ground pork was 2 

to 3 times greater than in pork slurry. Possible reasons for failure of SPP to reduce the 

thermal resistance of L. monocytogenes in ground pork are discussed. 

1 Primary researcher and author 

2 Author for correspondence 
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Introduction 

Listeria monocytogenes is a psychrotrophic pathogen, which poses a major threat to 

the safety of refrigerated foods (Ryser and Marth, 1999). This organism has a fatality rate of 

about 20% (Slutsker and Schuchat, 1999) and is the second leading cause of death due to 

bacterial food-borne disease in the U.S. (Mead et al., 1999). US regulatory agencies specify a 

zero tolerance for L. monocytogenes in cooked and ready-to-eat foods because of the 

relatively high fatality rate linked to food-borne listeriosis and the uncertainty of the 

infectious dose for immuno-compromised persons (Engle et al., 1990; Ryser and Marth, 

1999). 

Phosphates such as sodium pyrophosphate (SPP) and sodium tripolyphosphate 

(STPP) are used routinely in meat industry (Zaika and Kim, 1993). These food additives are 

permitted for use at a maximum level of 0.5% phosphates in meat and poultry products 

(USDA, 1982). The main functions of phosphates in meat products are to increase water-

holding capacity, bind structured meats, and protect flavor. However, phosphates may be 

incorporated into processed meats to improve microbial safety (Kijowski and Mast, 1988). 

Juneja and Marmer (1998) demonstrated a significant (P<0.05) decrease in heat resistance of 

Clostridium perfringens in precooked ground beef and turkey that contained 0.15 or 0.3% 

SPP compared to controls. In contrast, a mixture of sodium tripolyphosphate and sodium 

hexametaphosphate in combination with dextrose protected L. monocytogenes from thermal 

destruction in fresh ground pork (Yen et al., 1991). 

The composition of the heating menstruum can affect the thermal inactivation of L. 

monocytogenes (Boyle et al., 1990). The addition of salts to comminuted meat can increase 

the heat resistance of L. monocytogenes (Schoeni et al., 1991; Yen et al., 1991). Previous 
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published information on thermal inactivation of L. monocytogenes is based on studies 

conducted in various nutrient media (Stephens et al., 1994; Patchett et al., 1996), on meat 

surfaces (Huang et al., 1993) in meat slurries or suspensions (Duffy and Sheridan, 1997), 

ground pork (Kim et al., 1994; Ollinger-Snyder et al., 1995) and beef (Hansen and Knochel, 

1996). Boyle et al. (1990) investigated the thermal inactivation of L. monocytogenes in meat 

slurry and in ground beef. Murphy et al. ( 1999) evaluated the thermal inactivation of 

Salmonella spp. and Listeria innocua in ground chicken breast meat and in 0.1 % peptone-

agar solution. There is no published information that evaluates the effect of phosphates such 

as SPP on thermal inactivation of L. monocytogenes in ground pork and in pork slurry. 

Assessment of the thermal inactivation of pathogens in different media systems containing 

food additives can provide useful data for designing commercial thermal processes that 

ensure the microbiological safety of foods. The present study was carried out to 

quantitatively assess the influence of SPP in pork slurry and in ground pork on the thermal 

inactivation of L. monocytogenes. 

Materials and Methods 

Raw material 

Fresh ground pork, purchased from a local supermarket, was tested using the Food and Drug 

Administration method (Hitchins, 1998) for naturally occurring Listeria. The meat was 

separated into appropriate portions and stored at -20° C for less than four weeks before use. 

The same batch of ground meat (2.3 kg) was used for all of the experiments in this study. 

Prior to each experiment, portions of frozen meat were thawed for 18 h at 4 °C. 
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Cultures 

The three strains of L. monocytogenes used in this study were Scott A (serotype 4b; clinical 

isolate), V7 (serotype l/2a; milk isolate), and ATCC 19116 (chicken isolate). These strains, 

maintained as frozen (-70° C) stocks in brain heart infusion broth (BHI; Difeo) supplemented 

with 10% glycerol, were obtained from the culture collection of the Department of 

Microbiology at Iowa State University. During the course of this study, individual cultures 

were maintained in tryptic soy broth supplemented with 0.6% yeast extract (TSBYE) at 4° C 

with monthly transfers to maintain viability of the cultures. 

Preparation of inoculum 

To prepare the inoculum, 0.1 ml of stock culture was transferred to 10 ml ofTSBYE and 

incubated at 35° C for 18 h. After two consecutive transfers using 0.1 ml inoculum, cells 

were sedimented by centrifugation (9000 x g, 10 min, 4° C) and washed once in 0.1 % 

peptone water (w/v). The cell pellets were re-suspended in 10 ml peptone water. The cell 

population in each inoculum suspension was determined by surface plating appropriate 

dilutions (in 0.1 % peptone water), in duplicate, onto tryptic soy agar supplemented with 

0.6% yeast extract (TSAYE) plates, which were then incubated at 35° C for 48 h. Thereafter, 

5 ml suspensions of each strain were combined in a sterile test tube and mixed thoroughly by 

vortexing. An appropriate dilution of this mixture of strains was prepared in peptone water 

to obtain the desired cell concentration for inoculating the pork slurry or ground pork. 

Sample preparation and inoculation 

Pork slurry was prepared by mixing 40 g ground pork (80% lean) with 360 ml of0.1% sterile 

peptone water in a sterile mesh-lined filter bag (Celsis Inc., Evanston, IL). The mixture was 
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pummeled using a Seward Stomacher 400 Lab-blender (Seward Ltd., London, England) for 1 

minute at medium speed. Portions ( 100 ml) of the slurry were transferred into separate 250 

ml Erlenmeyer flasks to which 0, 0.25 or 0.50 g SPP (Brifisol K, BK Landenburg, Simi 

Valley, CA) were added. One ml of the washed cells ofL. monocytogenes was used to 

inoculate 100 ml of the pork slurry to give a final cell concentration of approximately 10 7 

CFU mr1• The inoculated pork slurry was aseptically dispensed into sterile Pyrex thermal-

death-time (TDT) tubes (2.5 ml per tube). The TDT tubes were heat-sealed by using a type 

3A blowpipe (Veriflow Corp. Richmond, Calif.) and then held in a laboratory refrigerator (4° 

C) for at least 15 min to allow temperature equilibration before heating. Samples (100 g) of 

ground pork were weighed in sterile 1000 ml beakers. SPP was added to the ground pork 

and thoroughly mixed for 2 min using a sterilized spatula to give a final SPP concentration of 

0.25% or 0.50% (w/v). Ground pork without SPP served as control. Pork samples (5 g) with 

or without SPP were placed into sterile stomacher bags. Each sample of ground pork was 

inoculated with 0.1 ml of the washed L. monocytogenes cell suspension to give a final cell 

concentration of approximately 107 CFU i 1
• Pork samples inoculated with 0.1 ml of sterile 

0.1 % (w/v) peptone water served as negative controls. All bags of inoculated ground pork 

were manually mixed to evenly distribute the inoculum in the meat samples then pressed 

against a flat surface to form a sample thickness of approximately 1-2 mm. The samples 

were vacuum-sealed using a Multivac vacuum packaging machine (Multivac, 

Wolfertschwenden, Germany) then held in a laboratory refrigerator ( 4 ° C) for at least 15 

minutes prior to heating. 
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Determination of pH and soluble orthophosphate 

Measurements of pH and soluble orthophosphates were performed on uninoculated samples. 

The pH of ground pork was determined using the method described by Sebranek (1978). A 5 

g portion of ground pork was homogenized with 30 ml of distilled, deionized water for 2 min 

in a Stomacher. A combination electrode and Orion Model 525 pH meter (Orion Research 

Inc., Boston. MA) were used to measure the pH of the homogenate and the pork slurry. 

Analysis of soluble orthophosphates was conducted according to the method described by 

Molins et al. (1985) using inoculated samples of pork slurry or ground pork with or without 

added SPP. All samples were analyzed at approximately 1 h after preparation. A standard 

curve was prepared by determining the absorbance ( 690 nm) values of dilutions of a standard 

solution containing known amounts of 0, 5, 10, 15, 20, and 25 µg mr1 of orthophosphate. 

Orthophosphate concentrations (µg mr1
) were then plotted against absorbance values to 

generate the standard curve. An extract of ground pork was prepared by blending 40 g meat 

with 360 ml sterile distilled water in a stomacher Lab-blender 400. The extract of ground 

pork as well as the pork slurry ( 1 : 10 dilution of pork in O .1 % peptone) was further diluted 

1: 10 with sterile deionized water to obtain orthophosphate concentrations within the 

measurable range (1-20 µg mr1
) of the standard curve. Soluble orthophosphate content was 

determined by multiplying the value obtained from the standard curve by the reciprocal of 

the dilution factor and expressing the result as µg soluble orthophosphate g·1of sample. 

Thermal inactivation 

Three replicate experiments were conducted. Each replicate experiment was conducted on 

separate days and the temperatures were randomly assigned. All samples were heated within 
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2 h of preparation. Sealed TDT tubes of pork slurry or vacuum-packaged pork samples were 

submerged in a thermostat-controlled Isotemp I013S heater water bath (Fisher Scientific, 

Pittsburgh, PA) stabilized at 55, 57.5, 60, or 62.5° C. The internal temperature of the samples 

was continuously monitored by a copper-constantan thermocouple inserted, prior to sealing, 

at the center of an uninoculated sample in TDT tube or bag. Thermocouple readings were 

measured using a digital meter. The average number of viable L. monocytogenes in unheated 

samples represented the number of L. monocytogenes present at time zero. Thereafter, 

samples in TDT tubes or bags corresponding to the three treatments (0, 0.25, and 0.50% 

phosphates) were removed at set time intervals and submerged in 50/50 ice/water slush (0° 

C) for about 5 min. Samples were analyzed within 30 min for L. monocytogenes using 

procedures described below. The frequency of sampling was based on the heating 

temperature. 

Microbiological analysis 

TDT tubes (2 tubes per treatment) were opened and their contents were aseptically pooled in 

separate sterile test tubes. One ml from each pooled sample was removed and serially diluted 

in sterile 0.1 % peptone. Packages of vacuum-packaged ground pork were aseptically cut 

open and 45 ml of sterile 0.1 % peptone was aseptically added to each pork sample. The 

mixtures were pummeled for 1 min in a Stomacher Lab-blender and 1.0 ml samples were 

serially diluted in sterile 0.1 % peptone solution. Samples (0.1 ml) of appropriate dilutions of 

the pork slurry or ground pork were surface-plated, in duplicate, onto plates of Modified 

Oxford (MOX) agar. In instances when increased sensitivity was required, 1.0 ml samples of 

undiluted slurry or meat mixture were plated directly onto MOX agar plates. Uninoculated 
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samples were plated as controls. All inoculated plates were incubated at 30° C. Bacterial 

colonies were counted at 96 h then checked for presumptive L. monocytogenes as described 

by McClain and Lee (1988). 

Calculation of D- and Z-values 

The D-values (time for 90% reduction in viable cells) expressed in minutes, were determined 

by plotting the log10 number of survivors versus time for each heating temperature using 

Microsoft Excel 98 Software (Microsoft Inc., Redmond, WA). Linear regression analysis 

(Ostle and Mensing, 1975) was used to determine the line of best fit for data on each survivor 

curve. The D-value for each phosphate/temperature treatment combination was determined 

by calculating the negative reciprocal of the slope of the survivor curve. The z-values were 

calculated by plotting the mean log1o D-values versus their corresponding heating 

temperature (° C) using Microsoft Excel 98 Software, and determining the change in 

temperature required to give a I-log difference in D-value. 

Statistical analysis 

Means and standard deviations of D-values from three replicate experiments were 

determined. Each replicate experiment included samples heated at 55, 57.5, 60, and 62.5° C 

on the same day. The D-values and z-values were analyzed by t-test using SAS 96 (SAS, 

1996). The z-values were compared by 2-way analysis of variance (ANOVA) (SAS, 1996). 
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Results and Discussion 

L. monocytogenes cells heated at 55 to 62.5° C in pork slurry or ground pork demonstrated 

log-linear decline in number of survivors over time. No marked shoulders or tailing were 

observed in any of the survivor curves. The linearity of the survivor curves indicated 

homogeneity in thermal resistance of the L. monocytogenes cell population used in the 

present study. 

The thermal resistance (D-values in min) of L. monocytogenes in pork slurry and 

ground pork that contained 0, 0.25, and 0.5% SPP is presented in Table 1. The addition of 

0.25% or 0.5% SPP to pork slurry significantly decreased (P<0.05) the D-values of L. 

monocytogenes at all temperatures tested (Table 1). Rapid cell death occurred in pork slurry 

that contained 0.25 or 0.5% SPP and heated at 62.5° C; no viable L. monocytogenes cells 

were detected after 1 min of heating. In contrast, the addition of 0.25% or 0.5% SPP to 

ground pork did not significantly decrease (P>0.05) the D-values for this organism. The z-

values for L. monocytogenes in pork slurry and ground pork that contained 0, 0.25, and 0.5 % 

SPP are shown in Figure 1. Significant decreases (P<0.05) in z-values were evident in pork 

slurry that contained 0.25 or 0.5% SPP. Only very small decreases in z values were evident 

in ground pork that contained 0.25 or 0.5% SPP; however, those decreases were not 

statistically significant (P>0.05). 

Model food systems such as broth media and meat slurries are commonly used as 

heating menstruums in studies to develop predictive thermal inactivation models for L. 

monocytogenes. The compositional differences in those media can alter the influence of 

phosphates or other antimicrobials on thermal resistance of L. monocytogenes due to changes 

in intrinsic factors, including water activity, pH, and protein and/or fat content. In the 
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present study, the greater extent of thermal inactivation of L. monocytogenes in pork slurry 

compared to ground pork slurry could be partly attributed to differences in properties of each 

heating menstruum such as moisture content and pH. As expected, the D-values for L. 

monocytogenes were lower in pork slurry than in ground pork at all temperatures tested 

(Table 1 ). These results are consistent with those of previous studies, which reported greater 

rates of thermal destruction of L. monocytogenes when more free water was present in the 

heating menstruum (Boyle et al., 1990; Ollinger-Snyder et al., 1995). 

The pH of the heating medium is considered as a major factor affecting the thermal 

resistance of bacteria. An assessment of the thermal inactivation of seven foodbome 

pathogens as a function of temperature, water activity, pH, and redox potential in synthetic 

media revealed that thermal inactivation increased with increasing water activity and 

decreasing pH (Reichart and Mohacsi-Farkas, 1994). In the present study, pork slurry and 

ground pork controls had pH values of 6.16 and 6.45, respectively. The addition of 0.25% or 

0.5% SPP resulted in a greater drop in pH of pork slurry compared to that of ground pork 

(Table 1). Juneja and Eblen (1999) demonstrated that decreasing the pH of beef gravy from 

8.0 to 4.0 resulted in a parallel decrease in the predicted D-value for L. monocytogenes at.55, 

57.5, 60, 62.5, and 65° C. A theoretical interpretation of how pH affects thermal inactivation 

of bacteria was given by Reichart (1994), who described a linear relationship between pH 

and the logarithm of the D-values for Escherichia coli. The author explained that the D-

value decreases linearly in the acid or alkaline range and has a maximum at the optimum pH 

for growth of the organism. 

A wide variety of alkaline and acid phosphatases are present in the muscles of 

animals. Earlier studies have reported that native phosphatases in fresh meat and shrimp 
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were responsible for the observed breakdown of added tetrasodium pyrophosphate, sodium 

tripolyphosphate, and sodium polyphosphate glassy (Awad, 1968; Tenhet et al., 1981). 

Molins et al. (1985) demonstrated that the concentration of orthophosphates in fresh pork 

increased at the expense of added pyrophosphates. In the present study, the soluble 

orthophosphate content of ground pork or pork slurry increased with increasing concentration 

of added SPP. The concentration of soluble orthophosphates, derived from SPP added to 

ground pork, was two to three times greater than that of pork slurry with corresponding 

amounts of added SPP {Table 2). The lower accumulation of soluble orthophosphates in 

pork slurry could be attributed to lower concentrations of phosphatases that resulted from the 

ten-fold dilution of ground pork to prepare the pork slurry. Samples of pork slurry or ground 

pork with or without added SPP were analyzed for soluble orthophosphates within 60 min of 

preparation. This time frame is consistent with the time that elapses prior to heating of the 

inoculated samples of ground pork or pork slurry in heat inactivation experiments. 

Therefore, the residual SPP reported in this study represent a reasonably estimate of SPP 

concentration to which L. monocytogenes is exposed during heating of pork slurry or ground 

pork. 

Some studies have demonstrated that sodium phosphates decrease the thermal 

resistance of Gram-positive pathogens, including L. monocytogenes, whereas others have 

reported that phosphates may protect L. monocytogenes from the destructive effect of heat. 

Juneja and Marmer (1998) demonstrated that SPP (0.1 or 0.3%) significantly (P<0.05) 

decreased the heat resistance of Clostridium perfringens in ground beef and turkey meat; 

both meats were sterilized by autoclaving at 121 °cfor 15 min prior to adding SPP. Heat-

induced hydrolysis may be involved in the loss of the antimicrobial properties of SPP in heat-
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sterilized laboratory media (Molins and Kraft, 1984). Awad (1968) determined that 

inactivation of meat phosphatases by heat during cooking began at about 40° C and was 

complete at 60° C. Therefore, in the study conducted by Juneja and Manner (1998), the heat 

sterilization of meats most likely inactivated the native phosphatases and spared the added 

SPP from degradation to orthophosphates. More recently, the sensitivity of L. 

monocytogenes to heating in a model food system (beef gravy) was shown to increase with 

increasing concentrations of SPP up to 0.2% (Juneja and Eblen, 1999). The results of those 

studies agree with results of the present study derived from the use of pork slurry but not 

ground pork, in which up to 0.5% SPP did not decrease the heat resistance of L. 

monocytogenes (Table 1). Yen et al. (1991) reported demonstrated that the addition of 0.4% 

sodium polyphosphates to ground pork failed to increase the thermal inactivation of L. 

monocytogenes compared to ground pork controls. In fact, the thermal inactivation of L. 

monocytogenes in ground pork that contained 0.4% sodium polyphosphates was 0.8 log CFU 

i 1 less than in ground pork alone. Those same authors concluded that the added 

polyphosphates significantly (P<0.05) protected L. monocytogenes from thermal destruction. 

In conclusion, the D- and z-values reported in the present study indicate contrasting 

effects of SPP on the thermal inactivation of L. monocytogenes in pork slurry compared to 

ground pork. The intrinsic properties of each heating menstruum including differences in 

moisture content, pH, and phosphatase activity could account for variations in the thermal 

death time values reported in this study and in previous studies. The thermal death time 

values from this study further emphasize the importance of validating in real products, 

thermal inactivation data derived from use of model food systems. Thermal inactivation data 

from validation studies could be utilized to establish adequate heat processing regimes that 
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would minimize the potential danger of foodborne illness from ground meats contaminated 

with L. monocytogenes. 
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Table 1. Heat resistance (D-values a in min) of a three-strain mixture of Listeria 
monocytogenes in pork slurry and ground pork that contained 0, 0.25, or 0.50% sodium 
pyrophosphate (SPP) at 55-62°C. 

Heating Medium pH 55°c 57.5°C 60°C 62.5°C 

Pork Slurry w/o SPP 6.16 ± 0.22 8.15 ± 0.906 ~ 2.57±0.13 0.99 ± 0.1015 0.18 ± 0.04 

Pork Slurry + 0.25% SPP 5.33 ± 0.04 4.75±1.14c 1.72 ± 0.48c 0.40 ± 0.02c ND 

Pork Slurry + 0.50% SPP 4.86 ± 0.04 3.51 ± 0.75c 1.31 ± 0.31c 0.31 ± 0.03c ND 

Ground Pork w/o SPP 6.45 ± 0.12 15.72 ± 0.88d 5.01 ± 0.21d 1.60 ± 0.23d 0.83 ± 0.20d 

Ground Pork+ 0.25%SPP 6.15 ± 0.04 16.97 ± 2.60d 5.28 ± 0.78d 1.56 ± 0.15d 0.80 ± 0.16d 

Ground Pork+ 0.50% SPP 5.97 ± 0.04 18.61 ± 2.75d 4.92 ± 0.42d 1.55 ± 0.26d 0.71 ± 0.24d 

a D-values are the means of three replications and expressed as mean± standard deviation; 
means that have different superscripts within the same column are significantly different 
(P<0.05). 
ND: No viable cells detected 
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Table 2. Amounta of soluble orthophosphates (µg g-1 of sample) derived from sodium 
pyrophosphate (SPP) added to samples of pork slurry and ground pork; samples analyzed 1hr 
after treatment. 

Ground pork without SPP 

with 0.25% SPP 

with 0.50% SPP 

Slurry without SPP 

with 0.25% SPP 

with 0.50% SPP 

Soluble 

Orthophosphates 

(µg g-1) 

1126 ± 51 

1374 ± 51 

1411 ± 28 

116 ± 4 

193 ± 1 

271 ± 3 

Derived 

Orthophosphates 

(µg g-1) 

248 ± 28 

285 ± 27 

77 ± 5 

155 ± 5 

% % 

Lossb Residualb 

0.04 0.21 

0.04 0.46 

0.01 0.24 

0.02 0.48 

av alues are the means of three replications and expressed as mean ± standard deviation 
bLoss or residual SPP as % of sample weight; P20 5 content is 64.5% of SPP (manufacturer 
analysis) 
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A predictive model to determine the effects of temperature, sodium pyrophosphate, and 

sodium chloride on thermal inactivation of starved Listeria monocytogenes in pork 

slurry 

A paper to be submitted in the Journal of Food Protection 

M.A. Lihono, A. F. Mendonca, J. S. Dickson, and P. M. Dixon 

ABSTRACT 

The effects and interactions of heating temperature (57.5 to 62.5 ° C), sodium 

pyrophosphate (SPP; 0 to 0.5%, wt/vol), and salt (NaCl; 0 to 6% wt/vol) on the thermal 

inactivation of starved Listeria monocytogenes ATCC 19116 in pork slurry were 

investigated. A split-split plot experimental design was used to compare 27 combinations of 

heating temperature, SPP, and NaCl levels. L. monocytogenes survivors were enumerated 

using tryptic soy agar supplemented with 0.6% yeast extract (TSA YE). Means of decimal 

reduction times (D-values) were modeled as a function of heating temperature, SPP, and 

NaCl levels. Increasing concentrations of SPP or NaCl in pork slurry protected starved L. 

monocytogenes from the destructive effect of heat. Combinations of 6.0% NaCl and SPP 

(0.25 or 0.5%) increased the thermal inactivation of the organism compared to 6% NaCl 

alone. All three variables interacted to affect thermal inactivation of L. monocytogenes. A 

mathematical model describing the combined effect of temperature, SPP, and NaCl levels on 

thermal inactivation of starved L. monocytogenes was developed. There was a high 

correlation (R2 = 0.97) between D-values predicted by the model and those observed 

experimentally. The model can predict D-values for any combinations of temperature, SPP, 
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and NaCl that fall within the range of those tested. This predictive model can be used to 

assist food processors to design thermal processes that include an adequate margin of safety 

for controlling L. monocytogenes in processed meats. 

INTRODUCTION 

Listeria monocytogenes, is a foodbome of major concern to food processors as well 

as public health regulatory agencies because it is ubiquitous in the environment and can grow 

at refrigerator temperatures (27, 30). L. monocytogenes has been isolated from a variety of 

foods including raw and ready-to-eat meat, poultry, seafood, dairy products and vegetables 

(3, 8, 11, 13, 28, 37). Undercooked meat and poultry have been cited as sources of 

listeriosis, and investigations of outbreaks in many countries have linked this disease to 

consumption of contaminated turkey, chicken, and pork products (5, 30, 31). Listeriosis has 

a high human fatality rate (20 to 30%) (27, 33) and is the second leading cause of mortality 

from bacterial foodbome illness in the US (25). Based on the high fatality rate of foodbome 

listeriosis and the uncertainty of the infectious dose for immunocompromised individuals, 

U.S. regulatory agencies specify zero tolerance for L. monocytogenes in cooked and ready-

to-eat foods (7, 30). 

Thermal processing is one of the most common techniques used to control L. 

monocytogenes in foods. However, effective control of this organism is challenging to food 

processors due to its high heat tolerance compared to that of other non-spore forming 

foodbome pathogens (21) and the potential for post-processing contamination of foods in the 
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processing plant. Farber and Peterkin (10) identified post-processing contamination with L. 

monocytogenes as a major source of contamination of food products. 

Previous studies involving L. monocytogenes demonstrated that the composition of 

the heating medium affected the thermal inactivation of this organism. For example, the heat 

resistance of L. monocytogenes was greater in ground pork than in pork slurry (18) and the 

heat resistance in meat slurry was greater than in phosphate buffer (2). In comminuted 

meats, the addition of phosphates, salt, or curing-salt mixes increased the thermotolerance of 

L. monocytogenes (22, 32, 39). Thermotolerance of L. monocytogenes is further increased 

when this organism has endured environmental stress such as sublethal heat shock, osmotic 

stress, acid or alkali, ethanol, hydrogen peroxide, and starvation (9, 15, 19, 20, 23, 34). 

Consequently, heat-processing procedures for foods should be designed to destroy the most 

heat resistant state of L. monocytogenes and thus provide an adequate margin of safety 

against this pathogen. Doyle et al. ( 6) suggested that there is need for additional data on D-

and z-values using stressed L. monocytogenes in specific food products. 

Predictive modeling of microbial inactivation in foods can be used to determine the 

effects of interactions between two or more food parameters on microbial heat resistance. In 

addition, predictive models permit estimation of the effect of various combinations of 

parameters that have not been tested definitively (38). Heat inactivation predictive models 

predict the survival of the target organism within a defined range of food formulation 

variables. These models, once validated in actual foods, can greatly assist processors in the 

formulation or reformulation of food products that are safe for the consumer (29). 

Microbial starvation is important to the food industry because water used for cleaning 

and rinsing food contact surfaces generally provides a low nutrient environment for 
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microorganisms. Certainly, the stress from prolonged deprivation of nutrients can induce 

increased microbial resistance to subsequent chemical and physical challenges (14). There is 

however a scarcity of published information on thermal inactivation of starved L. 

monocytogenes within a range of food formulation variables, including phosphates and salt. 

Accordingly, the objective of this study was to assess the effects and interactions of heating 

temperature, sodium pyrophosphate (SPP), and sodium chloride (NaCl) on thermal 

inactivation of L. monocytogenes in a model food system (pork slurry) following nutrient 

starvation. The data were subsequently used to develop a quadratic linear response model 

that describes the combined effects and interactions of these parameters on the thermal 

inactivation of L. monocytogenes. 

MATERIALS AND METHODS 

Culture and culture conditions. L. monocytogenes ATCC 19116, a chicken isolate 

obtained from the culture collection of the Department of Microbiology at Iowa State 

University, was used throughout this experiment. The culture was maintained as frozen (-70° 

C) stock in brain heart infusion broth (BHI, Difeo Laboratories, Detroit, MI) supplemented 

with I 0% glycerol until used. Prior to each experiment, the stock culture was transferred 

twice in 10 ml ofTSBYE and incubated at 35° C for 18 h. 

Nutrient starvation. A portion (1.0 ml) of L. monocytogenes stock culture was 

transferred to 100 ml of TSBYE in a screw-capped 250-ml Erlenmeyer flask. The inoculated 

medium was incubated at 35° C with shaking at 150 rpm in a shaker/incubator (New 

Brunswick Scientific Co. Inc., Edison, N.J.). Growth was monitored via optical density (OD) 

measurements using a spectrophotometer (Spectronic 1201, Milton Roy Co., Rochester, NY). 
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When the OD600 of the culture was about 0.25, exponential phase cells were harvested by 

centrifugation (9000 x g, 10 min, 4° C) and washed once in 0.85% NaCl (w/v). The cell 

pellets were re-suspended in fresh 0.85% NaCl (w/v). Cells were starved by holding the cell 

suspension statically in a screw-capped 250-ml flask at 25° C. D6o O c-values were determined 

at set time intervals to establish the time of starvation that induced maximal heat resistance of 

the cells. 

Preparation and inoculation of pork slurry. A batch of fresh ground pork (80% lean) 

from the Meat Science Lab at Iowa State University was divided into 454-g portions, 

vacuum-packaged (Multivac, Wolfertschwenden, Germany) then frozen (- 20° C). The 

packages of frozen ground pork were sterilized by irradiation at 40 kGy then immediately 

stored in a laboratory freezer. The day before each heating experiment, one package of 

ground pork was thawed overnight in a refrigerator (4° C). Pork slurry was prepared by 

aseptically transferring 62.5 g thawed ground pork to 337.5 ml of 0.1 % sterile peptone water 

in a sterile mesh-line filter bag (Celsis Inc., Evanston, IL, US). The mixture was pummeled 

using a Seward Stomacher 400 Lab-blender (Seward Ltd., London, England) for I minute at 

medium speed. Ground pork from a separate package of the same batch was used for each 

replicate experiment. Stock solutions of SPP and NaCl, prepared using 0.1 % peptone water, 

were sterilized by filtration through 0.22 um pore size filters. Aliquots (20 ml) of sterile SPP 

or NaCl stock solutions were aseptically added to 80-ml portions of sterile pork slurry to 

obtain final concentrations (%w/v) of SPP (0%, 0.25%, or 0.5%), NaCl (0%, 3%, or 6%), or 

various combinations of SPP and NaCl. The pH of samples were measured using an Orion 

Model 525 pH meter (Orion Research Inc., Boston MA) fitted with a combination electrode. 
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Portions (25 ml) of sterile pork slurry, with or without SPP, NaCl, or combinations, were 

inoculated with 0.25 ml of exponential- or stationary-phase cells ( control) or cells that were 

starved for 10 days in 0.85% saline to give a final cell concentration of approximately 106 

CFU/ml. Exponential phase cells were used as controls at all three heating temperatures 

whereas, both exponential- and stationary-phase cells were used as controls at one heating 

temperature (60° C). The inoculated pork slurry solution was aseptically dispensed into 

sterile Pyrex thermal-death-time (TDT) tubes (2.5 ml/tube). The TDT tubes were heat-sealed 

by using a type 3A blowpipe (Veriflow Corp., Richmond, CA) and then held in a laboratory 

refrigerator ( 4° C) for at least 15 min to allow temperature equilibration before heating at 

57.5, 60, or 62.5° C. 

Thermal inactivation. Samples were heated within 3 h of inoculation. Sealed TDT 

tubes of pork slurry were submerged in a thermostat-controlled Isotemp 1013S heater water 

bath (Fisher Scientific, Pittsburgh, PA) stabilized at the appropriate heating temperature. The 

internal temperature of the samples was continuously monitored by a copper-constantan 

thermocouple inserted, prior to sealing, at the center of an uninoculated sample in a TDT 

tube. Thermocouple readings were measured using a digital meter. The average number of 

viable cells in unheated samples represented the number of L. monocytogenes present at time 

zero. TDT tubes were removed at set time intervals and immediately submerged in 50/50 

ice/water slush (0° C) for about 5 min. Samples were analyzed within 30 min for L. 

monocytogenes survivors using procedures described below. 

Microbiological analysis. TDT tubes (2 tubes per treatment) were opened and their 

contents were aseptically pooled in separate sterile test tubes. One ml from each pooled 

sample was removed and serially diluted in sterile 0.1 % peptone. Samples (0.1 ml) of 
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appropriate dilutions were surface-plated, in duplicate, onto plates of TSA YE. In instances 

when increased sensitivity was required, 1.0 ml samples of undiluted slurry were plated 

directly onto TSA YE plates. All inoculated plates were incubated at 35° C. Bacterial 

colonies were counted at 72 h then checked for presumptive L. monocytogenes as described 

by McClain and Lee (24). 

Calculation of D-values. The D-values (time for 90% reduction in viable cells) 

expressed in minutes, were determined by plotting the log10 number of survivors versus time 

for each heating temperature using Microsoft Excel 98 Software (Microsoft Inc., Redmond, 

WA). Linear regression analysis (26) was used to determine the line of best fit for data on 

each survivor curve. The D-value for each temperature/phosphate/salt treatment combination 

was determined by calculating the negative reciprocal of the slope of the survivor curve. 

Experimental design and analysis. A split-split plot design was used to assess the 

effects and interactions of heating temperature ( 57 .5° C, 60° C, 62.5° C), phosphates (0%, 

0.25%, 0.50%), and salt (0%, 3.0%, 6.0%) on thermal inactivation of L. monocytogenes. Of 

all 27 variable combinations, 18 were replicated three times and 9 ( 62.5° C- treated samples) 

were replicated twice. For each replicate, temperature was randomly assigned to days, 

phosphate level was randomly assigned to heating run, and salt was randomly assigned to 

TDT tube. Samples of starved cells were heated along with those of washed exponential 

cells. At 57.5° C, samples were removed at 0, 8, 12, 16, 24, 36, and 48 min. At 60° C, 

samples were pulled out at 0, 2, 4, and 8 min. At 62.5°C, samples were removed at 0, 0.5, 

0.75, 1.5, 3.0, and 4.5 min. 

Statistical modeling. Means of D-values were modeled as a function of the heating 

temperature, SPP, and NaCl concentrations. D-values were transformed into the natural 
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logarithm form to stabilize the variance of the response parameter. The GLM procedure 

(SAS Institute Inc., Cary, N.C.) was used to analyze the D-values. A model with all quadratic 

terms was used. Effects of individual parameter and effects of interactions between 

parameters were analyzed by t-test. Significant effects were considered and a quadratic 

response model was developed. A correlation coefficient between the model and the 

observed data was computed. Predictions ofD-values and 95% prediction interval were 

obtained within the range of experimental conditions. 

RESULTS AND DISCUSSION 

Preliminary studies in our laboratory indicated that six of seven test strains of L. 

monocytogenes, starved for 14 days in 0.85% NaCl (25° C), exhibited a dramatic increase in 

heat resistance at approximately IO days of starvation. Starved L. monocytogenes ATCC 

19116 had the highest D-value at 60° C and consistently exhibited higher D-values than non-

starved exponential-phase or stationary-phase cells when heated (57.5 to 62.5° C) in pork 

slurry with or without added SPP or NaCl (data not shown). Therefore, we selected this 

organism for further studies on thermal inactivation. During starvation, this strain of L. 

monocytogenes exhibited a steady increase in heat resistance from day O to day 8 (D60-value 

of 0.45 at day O and 0.72 on day 8). Between days 8 and IO the heat resistance further 

increased and reached a maximum D-value of 1.16 at day IO (Fig. 1). L. monocytogenes 

ATCC 19116, starved for IO days in 0.85% NaCl, was used in development of a 

mathematical model that predicts the effects and interactions of temperature, NaCl, and SPP, 

on the thermal inactivation of L. monocytogenes. Starvation of L. monocytogenes in the 

laboratory is analogous to this organism surviving without nutrients on equipment surfaces or 
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in the processing plant environment for an extended time period that is long enough to elicit 

the stress re$ponse. 

A mathematical model that predicts the D-value of starved L. monocytogenes as a 

function of heating temperature, SPP, and NaCl was developed. Parameters and interactions 

between parameters were considered for their probability to significantly influence the 

model. A quadratic linear model was generated and the coefficients obtained for the model 

were as follows. 

For starved cells, loge D-value = 77. 0248 -2.0737 (temp)+ 0.0131 (temp)2 

-16.5308 (SPP) + 0.2599 (NaCl) 

+ 0.2887 (temp) (SPP) 

- 0.3105 (SPP) (NaCl) 

The above multiple-regression equation for the loge D-values yielded coefficients of 

correlation (R2
) of 0.97 and sum of squares error of 2.09. The equation is based on 27 unique 

combinations of temperature, SPP, and NaCl and can predict D-values for changes in 

parameter values (within the range tested) from any combination of these three 

environmental factors. 

Table 1 shows the D-values of L. monocytogenes, based on survivor curves generated 

using the quadratic model for variables of temperature, NaCl and SPP levels. There was a 

very good fit (R2 = 0.9795) between D-values predicted by the model and those of the 

observed experimentally (Fig. 2). Therefore, the model gives a valid description of the data 

that were used to generate it. 

Survivor curves exhibited a linear decrease in numbers of L. monocytogenes as 

heating time increased; however, at 57.5° C the survivor curves initially showed a shoulder or 
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lag period prior to a linear decline. The "shoulder effect" has been attributed to poor heat 

transfer through the heating medium. In addition, this effect may involve an initial 

requirement for the bacterial cells to sustain a certain amount of injury before the onset of 

first order inactivation kinetics in the log10 numbers of surviving cells (12). Calculation of 

D-values from the linear portion of survivor curves, while disregarding "shoulders" or lag 

periods, could result in an underestimation of the time needed to attain a desired reduction in 

numbers of a microorganism. Therefore, in the present study "shoulders" in survivor curves 

for L. monocytogenes in pork slurry heated at 57 .5° C were accounted for when calculating 

D-values. 

Figure 3 shows the effects of combinations of SPP and heating temperature on 

thermal inactivation of starved L. monocytogenes in pork slurry. Inactivation of L. 

monocytogenes increased as heating temperature increased. However, within each heating 

temperature the heat resistance of the organism increased with increasing SPP 

concentrations. For example, the predicted D-values at 60° C increased (50.6%) from 0.79 

min in pork slurry without SPP to 1.19 min in slurry with 0.5% SPP. At 62.5° C, predicted 

D-values increased (112%) from 0.24 min in pork slurry without SPP to 0.51 min in slurry 

with 0.5% SPP. These results agree with those of a previous study (39) in which L. 

monocytogenes exhibited greater heat resistance in ground pork containing 0.2% sodium 

tripolyphosphate and 0.2% sodium hexametaphosphate compared to pork without added 

phosphates. In that study, survival of L. monocytogenes was 0.8 log10 CFU/g greater in 

ground pork with added phosphates than in ground pork alone following heating at 60° C. 

Juneja and Eblen (16) also reported increased D-values at 55 to 65° C for L. monocytogenes 

Scott A in beef gravy (pH 4.0 or 8.0) containing 3% SPP. In contrast, Unda et al. (36) 
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indicated that a phosphate blend reduced the survival of L. monocytogenes in beef roasts that 

were pumped with brine and phosphates and cooked once or twice to 62.8° C. However, 

those authors did not state whether the phosphate blend reduced survival of L. 

monocytogenes during heating or whether it inhibited survivors during refrigerated storage of 

the beef roasts. 

Figure 4 shows the effects of combinations of NaCl and heating temperature on 

thermal inactivation of starved L. monocytogenes in pork slurry. The addition of 3% and 6% 

NaCl to pork slurry increased the D-values for the organism by about 118% and 120% 

respectively, irrespective of the heating temperatures used in the present study. Juneja and 

Eblen (16) demonstrated that the addition of NaCl (1.5 to 6%) to beef gravy protected against 

thermal inactivation of L. monocytogenes at all temperatures (55 to 65° C) tested in their 

study. Similar findings were reported by Yen et al. (39) who demonstrated that the heat 

resistance of L. monocytogenes increased when the organism was heated at 60° C in ground 

pork with added NaCl. Generally, our results on thermal inactivation of starved L. 

monocytogenes in pork slurry with added NaCl are consistent with those of other studies on 

thermal inactivation of non-starved cells of this pathogen in broth, pork, and beef ( 4, 11, 22, 

39). Those studies reported a decrease in thermal inactivation of L. monocytogenes in 

various meat blends containing 3 to 4 % NaCl. Therefore, the results of the present study can 

be used to predict the thermal inactivation of L. monocytogenes as affected by added NaCl in 

meat products. The influence of salts on thermal inactivation of microorganisms is largely 

due to reduced water activity and increased osmotic pressure of the heating medium (35). 

Figures 5a, 5b, and 5c show the effects and interaction of Oto 0.5% SPP and Oto 6% 

NaCl on the predicted D-values of starved L. monocytogenes in pork slurry at all heating 
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temperatures tested. The addition of NaCl to pork slurry that contained SPP dramatically 

increased the extent of heat resistance irrespective of heating temperature. When heated at 

60° C in pork slurry containing 0.25% SPP, starved L. monocytogenes had a predicted D-

value of 0.94 min; however, the addition of 3% and 6% NaCl increased the D-value tol.62 

min and 2.80 min, respectively. Previous studies have demonstrated the protective effect of 

NaCl in the presence of SPP (11, 22). Our findings are consistent with those previous studies 

(11, 22) and indicate that additives such as NaCl in processed meats may protect starved L. 

monocytogenes from the lethal effects of heat. Also, we observed that the protection of 

starved L. monocytogenes against heat inactivation occurred despite the decreases in pH of 

the pork slurry from the addition of SPP or NaCL 

Table 2 shows the changes in pH of the pork slurry from added SPP, NaCl, or 

combinations. The pH of pork slurry without added SPP or NaCl was 7 .15. Addition of SPP, 

NaCl or combinations decreased the pH of the pork slurry. For example the pH of pork 

slurry that contained 6% NaCl, 0.5 % SPP, or 6% NaCl plus 0.5 % SPP decreased to 6.52, 

5.38, or 4.81, respectively. Although pH was not one of the variables included in the model, 

the influence of these pH differences on thermal inactivation of L. monocytogenes in the .pork 

slurry cannot be discounted. Juneja and Eblen (16) reported a parallel decrease in D-values 

for L. monocytogenes in beef gravy as the pH of the gravy decreased from 8.0 to 4.0. In the 

present study, the increased D-values observed for starved L. monocytogenes in pork slurry 

despite the relative decreases in pH were most likely due to the protective effect of added 

SPP, NaCl or combinations. 

Figure 6 shows the predictive relative effect of various levels of SPP and NaCl on the 

heat sensitivity of starved L. monocytogenes. The z-value calculated from predicted D-
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values for this organism in pork slurry with no SPP or NaCl was 4.0° C. The single or 

combined addition of SPP and N aCI to pork slurry resulted in higher z-values for starved L. 

monocytogenes. Pork slurry with 3% or 6% NaCl slightly increased the z-value to 4.6° C 

whereas increasing levels of SPP alone resulted in a corresponding increase in z-value. For 

example, z-values of starved L. monocytogenes in pork slurry with 0.25 and 0.5% SPP 

increased to 5.6 and 6.7° C, respectively. In the present study, the increase in z-values for 

starved L. monocytogenes in pork slurry with added SPP, N aCI, or combinations confirmed 

the findings of Schoeni et al. (32). Those authors reported that the z-value for a five-strain 

cocktail of L. monocytogenes increased from 7 .9° C in ground beef roast to 10° C in a 

fermented beaker sausage that contained a cure premix (formulated for 3.3% NaCl, 1 % 

sucrose, and 156 ppm sodium nitrite). 

Our findings are not in agreement with those of Farber et al. (11) and Juneja and 

Eblen (16). Farber et al. (11) reported a decrease in z-values of L. monocytogenes from 

4.92° C in ground meat to 3.5° C in ground meat with curing salts. Juneja and Eblen (16) 

reported that beef gravy with added NaCl (1.5 to 6.0%), SPP (0.1 to 0.3%) or combinations 

decreased the z-values for a four-strain cocktail of L. monocytogenes. The findings of the 

present study are also in disagreement with results of our previous work in which the 

presence of 0.25% or 0.5% SPP significantly (P<0.05) decreased the z-value for a three-

strain mixture of non-starved L. monocytogenes ( A TCC 19116, V7, and Scott A) in pork 

slurry (18). A plausible explanation for these contradictory findings could be that could be 

that L. monocytogenes cells that have endured certain environmental stresses, such as acidity 

or starvation, are more resistant to subsequent heat treatment and are therefore more tolerant 

to changes in heating temperature. For example, in the study conducted by Schoeni et al. 
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(32), a sausage mixture was inoculated with a five-strain cocktail of L. monocytogenes along 

with a Pediococcus acidilactici starter culture. Prior to heating, the inoculated sausage was -

held for aboutl6 to 20 hat 32.2° C until the pH reached 4.8 to 5.0. The exposure of L. 

monocytogenes to decreasing pH in fermented beaker sausage for 16 to 20 h could have 

elicited the stress response that contributed to increased z-values reported for this organism. 

Based on the results of the present study, larger changes in heating temperature are necessary 

to obtain 90% reduction in D-value when starvedL. monocytogenes ATCC 19116 is heated 

in pork slurry with increasing levels of SPP or NaCl. Lou and Yousef (19) demonstrated that 

adaptation of L. monocytogenes Scott A to certain environmental stresses including acid, 

starvation, ethanol, and hydrogen peroxide significantly increased the heat resistance of this 

pathogen. 

The present study reports the development of a mathematical model that describes 

and predicts the effects and interactions of heating temperature, SPP, and NaCl levels on 

thermal inactivation of starved L. monocytogenes. Starvation causes stress on a bacterial 

population (17) that can induce cross-protection against subsequent unrelated stress (1 ). As 

non stress-adapted bacteria are commonly used in food safety studies, predictive models that 

use such data are likely to underestimate the actual ability of stress-adapted pathogens to 

survive food preservation methods. The predictive model developed in this study can assist 

food processors in designing thermal processes with an adequate margin of safety for 

effective control of L. monocytogenes in processed meats. 
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TABLE 1. Observed and predicted D-values at 57.5 to 62.5°C of starved L. monocytogenes 
A TCC 19116 in pork slurry supplemented with sodium pyrophosphate (SPP) 
(0.0 to 0.5% w/v) and NaCl (0.0 to 6.0%, w/v) 

Temperature SPP NaCl D-value observeda D-value predicted 
(° C) (%) (%) 

57.5 0 0 2.79(0.05) 2.93 
57.5 0 3 7.75(0.48) 6.40 
57.5 0 6 14.59(0~99) 13.95 
57.5 0.25 0 3.42(0.33) 2.98 
57.5 0.25 3 4.48(0.28) 5.16 
57.5 0.25 6 8.20(1.05) 8.91 
57.5 0.5 0 2.78(0.07) 3.03 
57.5 0.5 3 4.03(0.03) 4.16 
57.5 0.5 6 6.05(0.25) 5.69 
60 0 0 0.77(0.15) 0.79 
60 0 3 1.56(0.32) 1.68 
60 0 6 3.50(0.46) 3.66 
60 0.25 0 0.97(0.14) 0.94 
60 0.25 3 1.57(0.14) 1.62 
60 0.25 6 2.58(0.03) 2.80 
60 0.5 0 1.10(0.09) 1.19 
60 0.5 3 1.44(0.23) 1.56 
60 0.5 6 3.07(0.35) 2.14 

62.5 0 0 0.21(0.08) 0.24 
62.5 0 3 0.54(0.04) 0.52 
62.5 0 6 1.28(0.05) 1.13 
62.5 0.25 0 0.44(0.10) 0.35 
62.5 0.25 3 0.76(0.21) 0.60 
62.5 0.25 6 0.88(0.00) 1.04 
62.5 0.5 0 0.59(0.22) 0.51 
62.5 0.5 3 0.58(0.04) 0.69 
62.5 0.5 6 0.76(0.06) 0.95 

a Values represent means (standard deviations) of 27 variable combinations. Eighteen 
combinations were replicated three times; 9 combinations ( 62.5 °c) were replicated twice. 
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TABLE 2. pH valuesa for pork slurry with or without added 
sodium pyrophosphate (SPP), sodium chloride (NaCl), 
or combinations 

SPP (% w/v) 0.0 

0.0 
0.25 
0.50 

7.15 (±0.05) 
5.85 (± 0.28) 
5.38 (±0.20) 

NaCl(% w/v) 

3.0 

6.67 (± 0.02) 
5.35 (±0.32) 
4.98 (± 0.21) 

6.0 

6.52 ( ± 0.02) 
5.19 ( ± 0.30) 
4.81 ( ± 0.22) 

a pH values are the means of three replications and expressed as mean ± 
standard deviation. 
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Figure 1. Heat resistance (D-values) of L. monocytogenes ATCC 19116 during starvation 
for 12 days in 0.85% (w/v) NaCl at 25° C. D-values were derived from the thermal death 
rate curves of survivors following heating in 0.85% (w/v) NaCl at 60° C. 
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Figure 2. Agreement between predicted and observed D-values for starved L. 
monocytogenes ATCC 19116 in pork slurry. 
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Figure 3. Combined effect of SPP and heating temperature on the predicted D-values of 
starved L. monocytogenes ATCC 19116 in pork slurry. 
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Figure 4. Combined effect of NaCl and heating temperature on the predicted D-values of 
starved L. monocytogenes ATCC 19116 in pork slurry. 
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Figure Sa. Effects and interactions of SPP and NaCl on the predicted D-values of starved L. 
monocytogenes ATCC 19116 at 57.5° C. 
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Figure Sb. Effects and interactions of SPP and NaCl on the predicted D-values of starved L. 
monocytogenes A TCC 19116 at 60° C. 
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Figure Sc. Effects and interactions of SPP and NaCl on the predicted D-values of starved L. 
monocytogenes ATCC 19116 at 62.5° C. 



www.manaraa.com

0 
0 -"' Cl> :, 

ca > I 
N 

71 

7 

6 

6 

0.5 
0.25 

0 
SPp (%) 

Figure 6. The z-values of starved L. monocytogenes ATCC 19116 from predicted D-values 
obtained in pork slurry with added SPP (0.0 to 0.5%, w/v) and NaCl (0.0 to 6.0%, w/v). 
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